47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824 | class StreamHandler[StateT: AgentState](
BaseLoggingMixin,
InterruptConfigMixin,
):
"""Handles streaming execution for graph workflows in TAF.
StreamHandler manages the execution of agent workflows as directed graphs,
supporting streaming output, pause/resume via interrupts, state persistence,
and event publishing for monitoring and debugging. It enables incremental
result processing and robust error handling for complex agent workflows.
Attributes:
nodes: Dictionary mapping node names to Node instances.
edges: List of Edge instances defining graph connections and routing.
interrupt_before: List of node names where execution should pause before execution.
interrupt_after: List of node names where execution should pause after execution.
Example:
```python
handler = StreamHandler(nodes, edges)
async for chunk in handler.stream(input_data, config, state):
print(chunk)
```
"""
@inject
def __init__(
self,
nodes: dict[str, Node],
edges: list[Edge],
interrupt_before: list[str] | None = None,
interrupt_after: list[str] | None = None,
):
self.nodes: dict[str, Node] = nodes
self.edges: list[Edge] = edges
self.interrupt_before = interrupt_before or []
self.interrupt_after = interrupt_after or []
self._set_interrupts(interrupt_before, interrupt_after)
async def _check_interrupted(
self,
state: StateT,
input_data: dict[str, Any],
config: dict[str, Any],
) -> dict[str, Any]:
if state.is_interrupted():
logger.info(
"Resuming from interrupted state at node '%s'", state.execution_meta.current_node
)
# This is a resume case - clear interrupt and merge input data
if input_data:
config["resume_data"] = input_data
logger.debug("Added resume data with %d keys", len(input_data))
state.clear_interrupt()
elif not input_data.get("messages") and not state.context:
# This is a fresh execution - validate input data
error_msg = "Input data must contain 'messages' for new execution."
logger.error(error_msg)
raise ValueError(error_msg)
else:
logger.info(
"Starting fresh execution with %d messages", len(input_data.get("messages", []))
)
return config
async def _check_and_handle_interrupt(
self,
current_node: str,
interrupt_type: str,
state: StateT,
config: dict[str, Any],
) -> bool:
"""Check for interrupts and save state if needed. Returns True if interrupted."""
interrupt_nodes: list[str] = (
self.interrupt_before if interrupt_type == "before" else self.interrupt_after
) or []
if current_node in interrupt_nodes:
status = (
ExecutionStatus.INTERRUPTED_BEFORE
if interrupt_type == "before"
else ExecutionStatus.INTERRUPTED_AFTER
)
state.set_interrupt(
current_node,
f"interrupt_{interrupt_type}: {current_node}",
status,
)
# Save state and interrupt
await sync_data(
state=state,
config=config,
messages=[],
trim=True,
)
logger.debug("Node '%s' interrupted", current_node)
return True
logger.debug(
"No interrupts found for node '%s', continuing execution",
current_node,
)
return False
async def _interrupt_graph(
self,
current_node: str,
state: StateT,
config: dict[str, Any],
) -> bool:
"""Check for interrupts and save state if needed. Returns True if interrupted."""
status = ExecutionStatus.INTERRUPTED_AFTER
state.set_interrupt(
current_node,
f"interrupt_after: {current_node}",
status,
)
# Save state and interrupt
await sync_data(
state=state,
config=config,
messages=[],
trim=False,
)
logger.debug("Node '%s' interrupted", current_node)
return True
async def _check_stop_requested(
self,
state: StateT,
current_node: str,
event: EventModel,
messages: list[Message],
config: dict[str, Any],
) -> bool:
"""Check if a stop has been requested externally."""
state = await reload_state(config, state) # type: ignore
# Check if a stop was requested externally (e.g., frontend)
if state.is_stopped_requested():
logger.info(
"Stop requested for thread '%s' at node '%s'",
config.get("thread_id"),
current_node,
)
state.set_interrupt(
current_node,
"stop_requested",
ExecutionStatus.INTERRUPTED_AFTER,
data={"source": "stop", "info": "requested via is_stopped_requested"},
)
await sync_data(state=state, config=config, messages=messages, trim=True)
event.event_type = EventType.INTERRUPTED
event.metadata["interrupted"] = "Stop"
event.metadata["status"] = "Graph execution stopped by request"
event.data["state"] = state.model_dump()
publish_event(event)
return True
return False
async def _execute_graph( # noqa: PLR0912, PLR0915
self,
state: StateT,
input_data: dict[str, Any],
config: dict[str, Any],
) -> AsyncIterable[StreamChunk]:
"""
Execute the entire graph with support for interrupts and resuming.
Why so many chunks are yielded?
We allow user to set response type, if they want low granularity
Only few chunks like Message will be sent to user
"""
logger.info(
"Starting graph execution from node '%s' at step %d",
state.execution_meta.current_node,
state.execution_meta.step,
)
messages: list[Message] = []
messages_ids = set()
max_steps = config.get("recursion_limit", 25)
logger.debug("Max steps limit set to %d", max_steps)
last_human_messages = input_data.get("messages", []) or []
# Stream initial input messages (e.g., human messages) so callers see full conversation
# Only emit when present and avoid duplicates by tracking message_ids and existing context
for m in last_human_messages:
if m.message_id not in messages_ids:
messages.append(m)
messages_ids.add(m.message_id)
yield StreamChunk(
event=StreamEvent.MESSAGE,
message=m,
metadata={
"status": "invoking_graph",
"reason": "initial human message",
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
# Get current execution info from state
current_node = state.execution_meta.current_node
step = state.execution_meta.step
# Create event for graph execution
event = EventModel.default(
config,
data={"state": state.model_dump(exclude={"execution_meta"})},
content_type=[ContentType.STATE],
extra={"step": step, "current_node": current_node},
event=Event.GRAPH_EXECUTION,
node_name=current_node,
)
yield StreamChunk(
event=StreamEvent.UPDATES,
data={
"status": "invoking_graph",
"node": current_node,
"step": step,
"max_steps": max_steps,
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
try:
while current_node != END and step < max_steps:
logger.debug("Executing step %d at node '%s'", step, current_node)
# TODO: check if ai called for a tool in that case we should remove last message
res = await self._check_stop_requested(
state,
current_node,
event,
messages,
config,
)
if res:
event.event_type = EventType.INTERRUPTED
event.metadata["status"] = "Graph execution stopped by request"
event.data["state"] = state.model_dump()
publish_event(event)
# stream updated state and updates
yield StreamChunk(
event=StreamEvent.UPDATES,
data={
"status": "invoking_node",
"node": current_node,
"step": step,
"max_steps": max_steps,
"reason": "Graph execution stopped by request",
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
return
# Update execution metadata
state.set_current_node(current_node)
state.execution_meta.step = step
await call_realtime_sync(state, config)
# Update event with current step info
event.data["step"] = step
event.data["current_node"] = current_node
event.event_type = EventType.PROGRESS
event.metadata["status"] = f"Executing step {step} at node '{current_node}'"
publish_event(event)
# Check for interrupt_before
if await self._check_and_handle_interrupt(
current_node,
"before",
state,
config,
):
logger.info("Graph execution interrupted before node '%s'", current_node)
event.event_type = EventType.INTERRUPTED
event.metadata["status"] = "Graph execution interrupted before node execution"
event.metadata["interrupted"] = "Before"
event.data["interrupted"] = "Before"
publish_event(event)
yield StreamChunk(
event=StreamEvent.UPDATES,
data={
"status": "invoking_node",
"node": current_node,
"step": step,
"max_steps": max_steps,
"reason": "Graph execution interrupted before node execution",
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
return
# Execute current node
logger.debug("Executing node '%s'", current_node)
node = self.nodes[current_node]
####################################################
############ Execute Node ##########################
####################################################
result = node.stream(config, state) # type: ignore
logger.debug("Node '%s' execution completed", current_node)
####################################################
############ Execute Node ##########################
####################################################
res = await self._check_stop_requested(
state,
current_node,
event,
messages,
config,
)
if res:
event.event_type = EventType.INTERRUPTED
event.metadata["status"] = "Graph execution stopped by request"
event.data["state"] = state.model_dump()
publish_event(event)
yield StreamChunk(
event=StreamEvent.UPDATES,
data={
"status": "invoking_node",
"node": current_node,
"step": step,
"max_steps": max_steps,
"reason": "Graph execution stopped by request",
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
return
# Process result and get next node
yield StreamChunk(
event=StreamEvent.UPDATES,
data={
"status": "node_invoked",
"node": current_node,
"step": step,
"max_steps": max_steps,
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
# From Here message no need to stream its already streamed
# from execute node function, only stream updates and state
next_node = None
async for rs in result:
# Allow stop to break inner result loop as well
if isinstance(rs, StreamChunk):
yield rs
# if message and remote tool call then yield immediately
elif isinstance(rs, Message) and RemoteToolCallBlock in rs.content:
# now interrupt the graph
await self._interrupt_graph(
current_node,
state,
config,
)
yield StreamChunk(
event=StreamEvent.UPDATES,
data={
"status": "node_invoked",
"node": current_node,
"step": step,
"max_steps": max_steps,
"reason": "Remote tool call - graph interrupted",
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
return
elif isinstance(rs, Message) and not rs.delta:
if rs.message_id not in messages_ids:
messages.append(rs)
messages_ids.add(rs.message_id)
elif isinstance(rs, dict) and "is_non_streaming" in rs:
if rs["is_non_streaming"]:
new_state = rs.get("state", None)
if new_state:
state = new_state
yield StreamChunk(
event=StreamEvent.STATE,
state=state,
metadata={
"node": current_node,
"step": step,
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
new_messages = rs.get("messages", [])
for m in new_messages:
if m.message_id not in messages_ids and not m.delta:
messages.append(m)
messages_ids.add(m.message_id)
next_node = rs.get("next_node", next_node)
else:
# Streaming path completed: ensure any collected messages are persisted
new_messages = rs.get("messages", [])
for m in new_messages:
if m.message_id not in messages_ids and not m.delta:
messages.append(m)
messages_ids.add(m.message_id)
next_node = rs.get("next_node", next_node)
else:
# Process as node result (non-streaming path)
try:
state, new_messages, next_node = await process_node_result(
rs,
state,
[],
)
for m in new_messages:
if m.message_id not in messages_ids and not m.delta:
messages.append(m)
messages_ids.add(m.message_id)
except Exception as e:
logger.error("Failed to process node result: %s", e)
logger.debug(
"Node result processed, next_node=%s, total_messages=%d",
next_node,
len(messages),
)
# Add collected messages to state context
if messages:
state.context = add_messages(state.context, messages)
logger.debug("Added %d messages to state context", len(messages))
yield StreamChunk(
event=StreamEvent.STATE,
state=state,
metadata={
"node": current_node,
"step": step,
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
# Call realtime sync after node execution
await call_realtime_sync(state, config)
event.event_type = EventType.UPDATE
event.data["state"] = state.model_dump()
event.data["messages"] = [m.model_dump() for m in messages] if messages else []
if messages:
lm = messages[-1]
event.content = lm.text() if isinstance(lm.content, list) else lm.content
if isinstance(lm.content, list):
event.content_blocks = lm.content
event.content_type = [ContentType.STATE, ContentType.MESSAGE]
publish_event(event)
# Check for interrupt_after
if await self._check_and_handle_interrupt(
current_node,
"after",
state,
config,
):
logger.info("Graph execution interrupted after node '%s'", current_node)
# For interrupt_after, advance to next node before pausing
if next_node is None:
next_node = get_next_node(current_node, state, self.edges)
state.set_current_node(next_node)
event.event_type = EventType.INTERRUPTED
event.data["interrupted"] = "After"
event.metadata["interrupted"] = "After"
event.data["state"] = state.model_dump()
publish_event(event)
yield StreamChunk(
event=StreamEvent.UPDATES,
data={
"status": "node_invoked",
"node": current_node,
"step": step,
"max_steps": max_steps,
"reason": "Graph execution interrupted before node execution",
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
return
# Get next node
if next_node is None:
current_node = get_next_node(current_node, state, self.edges)
logger.debug("Next node determined by graph logic: '%s'", current_node)
else:
current_node = next_node
logger.debug("Next node determined by command: '%s'", current_node)
# Advance step after successful node execution
step += 1
state.advance_step()
await call_realtime_sync(state, config)
event.event_type = EventType.UPDATE
event.metadata["State_Updated"] = "State Updated"
event.data["state"] = state.model_dump()
publish_event(event)
yield StreamChunk(
event=StreamEvent.UPDATES,
state=state,
data={
"status": "node_invoked",
"node": current_node,
"step": step,
"max_steps": max_steps,
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
if step >= max_steps:
error_msg = "Graph execution exceeded maximum steps"
logger.error(error_msg)
state.error(error_msg)
await call_realtime_sync(state, config)
event.event_type = EventType.ERROR
event.data["state"] = state.model_dump()
event.metadata["error"] = error_msg
event.metadata["step"] = step
event.metadata["current_node"] = current_node
publish_event(event)
yield Message(
role="assistant",
content=[ErrorBlock(text=error_msg)], # type: ignore
)
yield StreamChunk(
event=StreamEvent.ERROR,
state=state,
data={
"status": "graph_invoked",
"node": current_node,
"step": step,
"max_steps": max_steps,
"reason": error_msg,
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
raise GraphRecursionError(
f"Graph execution exceeded recursion limit: {max_steps}"
)
# Execution completed successfully
logger.info(
"Graph execution completed successfully at node '%s' after %d steps",
current_node,
step,
)
state.complete()
is_context_trimmed = await sync_data(
state=state,
config=config,
messages=messages,
trim=True,
)
# Create completion event
event.event_type = EventType.END
event.data["state"] = state.model_dump()
event.data["messages"] = [m.model_dump() for m in messages] if messages else []
if messages:
fm = messages[-1]
event.content = fm.text() if isinstance(fm.content, list) else fm.content
if isinstance(fm.content, list):
event.content_blocks = fm.content
event.content_type = [ContentType.STATE, ContentType.MESSAGE]
event.metadata["status"] = "Graph execution completed"
event.metadata["step"] = step
event.metadata["current_node"] = current_node
event.metadata["is_context_trimmed"] = is_context_trimmed
publish_event(event)
yield StreamChunk(
event=StreamEvent.UPDATES,
state=state,
data={
"status": "graph_invoked",
"node": current_node,
"step": step,
"max_steps": max_steps,
"is_context_trimmed": is_context_trimmed,
"reason": "Graph execution completed successfully",
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
except Exception as e:
# Handle execution errors
logger.exception("Graph execution failed: %s", e)
state.error(str(e))
# Publish error event
event.event_type = EventType.ERROR
event.metadata["error"] = str(e)
event.data["state"] = state.model_dump()
publish_event(event)
await sync_data(
state=state,
config=config,
messages=messages,
trim=True,
)
yield StreamChunk(
event=StreamEvent.ERROR,
state=state,
data={
"status": "invoked_graph",
"node": current_node,
"step": step,
"max_steps": max_steps,
"reason": str(e),
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
raise e
async def stream(
self,
input_data: dict[str, Any],
config: dict[str, Any],
default_state: StateT,
response_granularity: ResponseGranularity = ResponseGranularity.LOW,
) -> AsyncGenerator[StreamChunk]:
"""Execute the graph asynchronously with streaming output.
Runs the graph workflow from start to finish, yielding incremental results
as they become available. Automatically detects whether to start a fresh
execution or resume from an interrupted state, supporting pause/resume
and checkpointing.
Args:
input_data: Input dictionary for graph execution. For new executions,
should contain 'messages' key with initial messages. For resumed
executions, can contain additional data to merge.
config: Configuration dictionary containing execution settings and context.
default_state: Initial or template AgentState for workflow execution.
response_granularity: Level of detail in the response (LOW, PARTIAL, FULL).
Yields:
Message objects representing incremental results from graph execution.
The exact type and frequency of yields depends on node implementations
and workflow configuration.
Raises:
GraphRecursionError: If execution exceeds recursion limit.
ValueError: If input_data is invalid for new execution.
Various exceptions: Depending on node execution failures.
Example:
```python
async for chunk in handler.stream(input_data, config, state):
print(chunk)
```
"""
logger.info(
"Starting asynchronous graph execution with %d input keys, granularity=%s",
len(input_data) if input_data else 0,
response_granularity,
)
config = config or {}
input_data = input_data or {}
start_time = time.time()
# Load or initialize state
logger.debug("Loading or creating state from input data")
new_state = await load_or_create_state(
input_data,
config,
default_state,
)
state: StateT = new_state # type: ignore[assignment]
logger.debug(
"State loaded: interrupted=%s, current_node=%s, step=%d",
state.is_interrupted(),
state.execution_meta.current_node,
state.execution_meta.step,
)
cfg = config.copy()
if "user" in cfg:
# This will be available when you are calling
# vi agentflow api
del cfg["user"]
event = EventModel.default(
config,
data={"state": state},
content_type=[ContentType.STATE],
extra={
"is_interrupted": state.is_interrupted(),
"current_node": state.execution_meta.current_node,
"step": state.execution_meta.step,
"config": cfg,
"response_granularity": response_granularity.value,
},
)
# Publish graph initialization event
publish_event(event)
# Check if this is a resume case
config = await self._check_interrupted(state, input_data, config)
# Now start Execution
# Execute graph
logger.debug("Beginning graph execution")
result = self._execute_graph(state, input_data, config)
# Stream results based on response granularity
async for chunk in result:
match response_granularity:
case ResponseGranularity.FULL:
yield chunk
case ResponseGranularity.PARTIAL:
if chunk.event != StreamEvent.UPDATES:
yield chunk
case ResponseGranularity.LOW:
if chunk.event in [StreamEvent.MESSAGE, StreamEvent.ERROR]:
yield chunk
# Publish graph completion event
time_taken = time.time() - start_time
logger.info("Graph execution finished in %.2f seconds", time_taken)
event.event_type = EventType.END
event.metadata.update(
{
"time_taken": time_taken,
"state": state.model_dump(),
"step": state.execution_meta.step,
"current_node": state.execution_meta.current_node,
"is_interrupted": state.is_interrupted(),
"total_messages": len(state.context) if state.context else 0,
}
)
publish_event(event)
yield StreamChunk(
event=StreamEvent.UPDATES,
state=state,
data={
"status": "graph_invoked",
"reason": "Graph execution finished",
"time_taken": time_taken,
"is_interrupted": state.is_interrupted(),
"total_messages": len(state.context) if state.context else 0,
},
thread_id=config.get("thread_id"),
run_id=config.get("run_id"),
)
|