Skip to content

Base

Tool execution node for PyAgenity graph workflows.

This module provides the ToolNode class, which serves as a unified registry and executor for callable functions from various sources including local functions, MCP (Model Context Protocol) tools, Composio adapters, and LangChain tools. The ToolNode is designed with a modular architecture using mixins to handle different tool providers.

The ToolNode maintains compatibility with PyAgenity's dependency injection system and publishes execution events for monitoring and debugging purposes.

Typical usage example
def my_tool(query: str) -> str:
    return f"Result for: {query}"


tools = ToolNode([my_tool])
result = await tools.invoke("my_tool", {"query": "test"}, "call_id", config, state)

Classes:

Name Description
ToolNode

A unified registry and executor for callable functions from various tool providers.

Attributes:

Name Type Description
logger

Attributes

logger module-attribute

logger = getLogger(__name__)

Classes

ToolNode

Bases: SchemaMixin, LocalExecMixin, MCPMixin, ComposioMixin, LangChainMixin, KwargsResolverMixin

A unified registry and executor for callable functions from various tool providers.

ToolNode serves as the central hub for managing and executing tools from multiple sources: - Local Python functions - MCP (Model Context Protocol) tools - Composio adapter tools - LangChain tools

The class uses a mixin-based architecture to separate concerns and maintain clean integration with different tool providers. It provides both synchronous and asynchronous execution methods with comprehensive event publishing and error handling.

Attributes:

Name Type Description
_funcs dict[str, Callable]

Dictionary mapping function names to callable functions.

_client Client | None

Optional MCP client for remote tool execution.

_composio ComposioAdapter | None

Optional Composio adapter for external integrations.

_langchain Any | None

Optional LangChain adapter for LangChain tools.

mcp_tools list[str]

List of available MCP tool names.

composio_tools list[str]

List of available Composio tool names.

langchain_tools list[str]

List of available LangChain tool names.

Example
# Define local tools
def weather_tool(location: str) -> str:
    return f"Weather in {location}: Sunny, 25°C"


def calculator(a: int, b: int) -> int:
    return a + b


# Create ToolNode with local functions
tools = ToolNode([weather_tool, calculator])

# Execute a tool
result = await tools.invoke(
    name="weather_tool",
    args={"location": "New York"},
    tool_call_id="call_123",
    config={"user_id": "user1"},
    state=agent_state,
)

Methods:

Name Description
__init__

Initialize ToolNode with functions and optional tool adapters.

all_tools

Get all available tools from all configured providers.

all_tools_sync

Synchronously get all available tools from all configured providers.

get_local_tool

Generate OpenAI-compatible tool definitions for all registered local functions.

invoke

Execute a specific tool by name with the provided arguments.

stream

Execute a tool with streaming support, yielding incremental results.

Source code in pyagenity/graph/tool_node/base.py
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
class ToolNode(
    SchemaMixin,
    LocalExecMixin,
    MCPMixin,
    ComposioMixin,
    LangChainMixin,
    KwargsResolverMixin,
):
    """A unified registry and executor for callable functions from various tool providers.

    ToolNode serves as the central hub for managing and executing tools from multiple sources:
    - Local Python functions
    - MCP (Model Context Protocol) tools
    - Composio adapter tools
    - LangChain tools

    The class uses a mixin-based architecture to separate concerns and maintain clean
    integration with different tool providers. It provides both synchronous and asynchronous
    execution methods with comprehensive event publishing and error handling.

    Attributes:
        _funcs: Dictionary mapping function names to callable functions.
        _client: Optional MCP client for remote tool execution.
        _composio: Optional Composio adapter for external integrations.
        _langchain: Optional LangChain adapter for LangChain tools.
        mcp_tools: List of available MCP tool names.
        composio_tools: List of available Composio tool names.
        langchain_tools: List of available LangChain tool names.

    Example:
        ```python
        # Define local tools
        def weather_tool(location: str) -> str:
            return f"Weather in {location}: Sunny, 25°C"


        def calculator(a: int, b: int) -> int:
            return a + b


        # Create ToolNode with local functions
        tools = ToolNode([weather_tool, calculator])

        # Execute a tool
        result = await tools.invoke(
            name="weather_tool",
            args={"location": "New York"},
            tool_call_id="call_123",
            config={"user_id": "user1"},
            state=agent_state,
        )
        ```
    """

    def __init__(
        self,
        functions: t.Iterable[t.Callable],
        client: deps.Client | None = None,  # type: ignore
        composio_adapter: ComposioAdapter | None = None,
        langchain_adapter: t.Any | None = None,
    ) -> None:
        """Initialize ToolNode with functions and optional tool adapters.

        Args:
            functions: Iterable of callable functions to register as tools. Each function
                will be registered with its `__name__` as the tool identifier.
            client: Optional MCP (Model Context Protocol) client for remote tool access.
                Requires 'fastmcp' and 'mcp' packages to be installed.
            composio_adapter: Optional Composio adapter for external integrations and
                third-party API access.
            langchain_adapter: Optional LangChain adapter for accessing LangChain tools
                and integrations.

        Raises:
            ImportError: If MCP client is provided but required packages are not installed.
            TypeError: If any item in functions is not callable.

        Note:
            When using MCP client functionality, ensure you have installed the required
            dependencies with: `pip install pyagenity[mcp]`
        """
        logger.info("Initializing ToolNode with %d functions", len(list(functions)))

        if client is not None:
            # Read flags dynamically so tests can patch pyagenity.graph.tool_node.HAS_*
            mod = sys.modules.get("pyagenity.graph.tool_node")
            has_fastmcp = getattr(mod, "HAS_FASTMCP", deps.HAS_FASTMCP) if mod else deps.HAS_FASTMCP
            has_mcp = getattr(mod, "HAS_MCP", deps.HAS_MCP) if mod else deps.HAS_MCP

            if not has_fastmcp or not has_mcp:
                raise ImportError(
                    "MCP client functionality requires 'fastmcp' and 'mcp' packages. "
                    "Install with: pip install pyagenity[mcp]"
                )
            logger.debug("ToolNode initialized with MCP client")

        self._funcs: dict[str, t.Callable] = {}
        self._client: deps.Client | None = client  # type: ignore
        self._composio: ComposioAdapter | None = composio_adapter
        self._langchain: t.Any | None = langchain_adapter

        for fn in functions:
            if not callable(fn):
                raise TypeError("ToolNode only accepts callables")
            self._funcs[fn.__name__] = fn

        self.mcp_tools: list[str] = []
        self.composio_tools: list[str] = []
        self.langchain_tools: list[str] = []

    async def _all_tools_async(self) -> list[dict]:
        tools: list[dict] = self.get_local_tool()
        tools.extend(await self._get_mcp_tool())
        tools.extend(await self._get_composio_tools())
        tools.extend(await self._get_langchain_tools())
        return tools

    async def all_tools(self) -> list[dict]:
        """Get all available tools from all configured providers.

        Retrieves and combines tool definitions from local functions, MCP client,
        Composio adapter, and LangChain adapter. Each tool definition includes
        the function schema with parameters and descriptions.

        Returns:
            List of tool definitions in OpenAI function calling format. Each dict
            contains 'type': 'function' and 'function' with name, description,
            and parameters schema.

        Example:
            ```python
            tools = await tool_node.all_tools()
            # Returns:
            # [
            #   {
            #     "type": "function",
            #     "function": {
            #       "name": "weather_tool",
            #       "description": "Get weather information for a location",
            #       "parameters": {
            #         "type": "object",
            #         "properties": {
            #           "location": {"type": "string"}
            #         },
            #         "required": ["location"]
            #       }
            #     }
            #   }
            # ]
            ```
        """
        return await self._all_tools_async()

    def all_tools_sync(self) -> list[dict]:
        """Synchronously get all available tools from all configured providers.

        This is a synchronous wrapper around the async all_tools() method.
        It uses asyncio.run() to handle async operations from MCP, Composio,
        and LangChain adapters.

        Returns:
            List of tool definitions in OpenAI function calling format.

        Note:
            Prefer using the async `all_tools()` method when possible, especially
            in async contexts, to avoid potential event loop issues.
        """
        tools: list[dict] = self.get_local_tool()
        if self._client:
            result = asyncio.run(self._get_mcp_tool())
            if result:
                tools.extend(result)
        comp = asyncio.run(self._get_composio_tools())
        if comp:
            tools.extend(comp)
        lc = asyncio.run(self._get_langchain_tools())
        if lc:
            tools.extend(lc)
        return tools

    async def invoke(  # noqa: PLR0915
        self,
        name: str,
        args: dict,
        tool_call_id: str,
        config: dict[str, t.Any],
        state: AgentState,
        callback_manager: CallbackManager = Inject[CallbackManager],
    ) -> t.Any:
        """Execute a specific tool by name with the provided arguments.

        This method handles tool execution across all configured providers (local,
        MCP, Composio, LangChain) with comprehensive error handling, event publishing,
        and callback management.

        Args:
            name: The name of the tool to execute.
            args: Dictionary of arguments to pass to the tool function.
            tool_call_id: Unique identifier for this tool execution, used for
                tracking and result correlation.
            config: Configuration dictionary containing execution context and
                user-specific settings.
            state: Current agent state for context-aware tool execution.
            callback_manager: Manager for executing pre/post execution callbacks.
                Injected via dependency injection if not provided.

        Returns:
            Message object containing tool execution results, either successful
            output or error information with appropriate status indicators.

        Raises:
            The method handles all exceptions internally and returns error Messages
            rather than raising exceptions, ensuring robust execution flow.

        Example:
            ```python
            result = await tool_node.invoke(
                name="weather_tool",
                args={"location": "Paris", "units": "metric"},
                tool_call_id="call_abc123",
                config={"user_id": "user1", "session_id": "session1"},
                state=current_agent_state,
            )

            # result is a Message with tool execution results
            print(result.content)  # Tool output or error information
            ```

        Note:
            The method publishes execution events throughout the process for
            monitoring and debugging purposes. Tool execution is routed based
            on tool provider precedence: MCP → Composio → LangChain → Local.
        """
        logger.info("Executing tool '%s' with %d arguments", name, len(args))
        logger.debug("Tool arguments: %s", args)

        event = EventModel.default(
            config,
            data={"args": args, "tool_call_id": tool_call_id, "function_name": name},
            content_type=[ContentType.TOOL_CALL],
            event=Event.TOOL_EXECUTION,
        )
        event.node_name = name
        # Attach structured tool call block
        with contextlib.suppress(Exception):
            event.content_blocks = [ToolCallBlock(id=tool_call_id, name=name, args=args)]
        publish_event(event)

        if name in self.mcp_tools:
            event.metadata["is_mcp"] = True
            publish_event(event)
            res = await self._mcp_execute(
                name,
                args,
                tool_call_id,
                config,
                callback_manager,
            )
            event.data["message"] = res.model_dump()
            # Attach tool result block mirroring the tool output
            with contextlib.suppress(Exception):
                event.content_blocks = [
                    ToolResultBlock(call_id=tool_call_id, output=res.model_dump())
                ]
            event.event_type = EventType.END
            event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
            publish_event(event)
            return res

        if name in self.composio_tools:
            event.metadata["is_composio"] = True
            publish_event(event)
            res = await self._composio_execute(
                name,
                args,
                tool_call_id,
                config,
                callback_manager,
            )
            event.data["message"] = res.model_dump()
            with contextlib.suppress(Exception):
                event.content_blocks = [
                    ToolResultBlock(call_id=tool_call_id, output=res.model_dump())
                ]
            event.event_type = EventType.END
            event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
            publish_event(event)
            return res

        if name in self.langchain_tools:
            event.metadata["is_langchain"] = True
            publish_event(event)
            res = await self._langchain_execute(
                name,
                args,
                tool_call_id,
                config,
                callback_manager,
            )
            event.data["message"] = res.model_dump()
            with contextlib.suppress(Exception):
                event.content_blocks = [
                    ToolResultBlock(call_id=tool_call_id, output=res.model_dump())
                ]
            event.event_type = EventType.END
            event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
            publish_event(event)
            return res

        if name in self._funcs:
            event.metadata["is_mcp"] = False
            publish_event(event)
            res = await self._internal_execute(
                name,
                args,
                tool_call_id,
                config,
                state,
                callback_manager,
            )
            event.data["message"] = res.model_dump()
            with contextlib.suppress(Exception):
                event.content_blocks = [
                    ToolResultBlock(call_id=tool_call_id, output=res.model_dump())
                ]
            event.event_type = EventType.END
            event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
            publish_event(event)
            return res

        error_msg = f"Tool '{name}' not found."
        event.data["error"] = error_msg
        event.event_type = EventType.ERROR
        event.content_type = [ContentType.TOOL_RESULT, ContentType.ERROR]
        publish_event(event)
        return Message.tool_message(
            content=[
                ErrorBlock(message=error_msg),
                ToolResultBlock(
                    call_id=tool_call_id,
                    output=error_msg,
                    is_error=True,
                    status="failed",
                ),
            ],
        )

    async def stream(  # noqa: PLR0915
        self,
        name: str,
        args: dict,
        tool_call_id: str,
        config: dict[str, t.Any],
        state: AgentState,
        callback_manager: CallbackManager = Inject[CallbackManager],
    ) -> t.AsyncIterator[Message]:
        """Execute a tool with streaming support, yielding incremental results.

        Similar to invoke() but designed for tools that can provide streaming responses
        or when you want to process results as they become available. Currently,
        most tool providers return complete results, so this method typically yields
        a single Message with the full result.

        Args:
            name: The name of the tool to execute.
            args: Dictionary of arguments to pass to the tool function.
            tool_call_id: Unique identifier for this tool execution.
            config: Configuration dictionary containing execution context.
            state: Current agent state for context-aware tool execution.
            callback_manager: Manager for executing pre/post execution callbacks.

        Yields:
            Message objects containing tool execution results or status updates.
            For most tools, this will yield a single complete result Message.

        Example:
            ```python
            async for message in tool_node.stream(
                name="data_processor",
                args={"dataset": "large_data.csv"},
                tool_call_id="call_stream123",
                config={"user_id": "user1"},
                state=current_state,
            ):
                print(f"Received: {message.content}")
                # Process each streamed result
            ```

        Note:
            The streaming interface is designed for future expansion where tools
            may provide true streaming responses. Currently, it provides a
            consistent async iterator interface over tool results.
        """
        logger.info("Executing tool '%s' with %d arguments", name, len(args))
        logger.debug("Tool arguments: %s", args)
        event = EventModel.default(
            config,
            data={"args": args, "tool_call_id": tool_call_id, "function_name": name},
            content_type=[ContentType.TOOL_CALL],
            event=Event.TOOL_EXECUTION,
        )
        event.node_name = "ToolNode"
        with contextlib.suppress(Exception):
            event.content_blocks = [ToolCallBlock(id=tool_call_id, name=name, args=args)]

        if name in self.mcp_tools:
            event.metadata["function_type"] = "mcp"
            publish_event(event)
            message = await self._mcp_execute(
                name,
                args,
                tool_call_id,
                config,
                callback_manager,
            )
            event.data["message"] = message.model_dump()
            with contextlib.suppress(Exception):
                event.content_blocks = [
                    ToolResultBlock(call_id=tool_call_id, output=message.model_dump())
                ]
            event.event_type = EventType.END
            event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
            publish_event(event)
            yield message
            return

        if name in self.composio_tools:
            event.metadata["function_type"] = "composio"
            publish_event(event)
            message = await self._composio_execute(
                name,
                args,
                tool_call_id,
                config,
                callback_manager,
            )
            event.data["message"] = message.model_dump()
            with contextlib.suppress(Exception):
                event.content_blocks = [
                    ToolResultBlock(call_id=tool_call_id, output=message.model_dump())
                ]
            event.event_type = EventType.END
            event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
            publish_event(event)
            yield message
            return

        if name in self.langchain_tools:
            event.metadata["function_type"] = "langchain"
            publish_event(event)
            message = await self._langchain_execute(
                name,
                args,
                tool_call_id,
                config,
                callback_manager,
            )
            event.data["message"] = message.model_dump()
            with contextlib.suppress(Exception):
                event.content_blocks = [
                    ToolResultBlock(call_id=tool_call_id, output=message.model_dump())
                ]
            event.event_type = EventType.END
            event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
            publish_event(event)
            yield message
            return

        if name in self._funcs:
            event.metadata["function_type"] = "internal"
            publish_event(event)

            result = await self._internal_execute(
                name,
                args,
                tool_call_id,
                config,
                state,
                callback_manager,
            )
            event.data["message"] = result.model_dump()
            with contextlib.suppress(Exception):
                event.content_blocks = [
                    ToolResultBlock(call_id=tool_call_id, output=result.model_dump())
                ]
            event.event_type = EventType.END
            event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
            publish_event(event)
            yield result
            return

        error_msg = f"Tool '{name}' not found."
        event.data["error"] = error_msg
        event.event_type = EventType.ERROR
        event.content_type = [ContentType.TOOL_RESULT, ContentType.ERROR]
        publish_event(event)

        yield Message.tool_message(
            content=[
                ErrorBlock(message=error_msg),
                ToolResultBlock(
                    call_id=tool_call_id,
                    output=error_msg,
                    is_error=True,
                    status="failed",
                ),
            ],
        )

Attributes

composio_tools instance-attribute
composio_tools = []
langchain_tools instance-attribute
langchain_tools = []
mcp_tools instance-attribute
mcp_tools = []

Functions

__init__
__init__(functions, client=None, composio_adapter=None, langchain_adapter=None)

Initialize ToolNode with functions and optional tool adapters.

Parameters:

Name Type Description Default
functions
Iterable[Callable]

Iterable of callable functions to register as tools. Each function will be registered with its __name__ as the tool identifier.

required
client
Client | None

Optional MCP (Model Context Protocol) client for remote tool access. Requires 'fastmcp' and 'mcp' packages to be installed.

None
composio_adapter
ComposioAdapter | None

Optional Composio adapter for external integrations and third-party API access.

None
langchain_adapter
Any | None

Optional LangChain adapter for accessing LangChain tools and integrations.

None

Raises:

Type Description
ImportError

If MCP client is provided but required packages are not installed.

TypeError

If any item in functions is not callable.

Note

When using MCP client functionality, ensure you have installed the required dependencies with: pip install pyagenity[mcp]

Source code in pyagenity/graph/tool_node/base.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
def __init__(
    self,
    functions: t.Iterable[t.Callable],
    client: deps.Client | None = None,  # type: ignore
    composio_adapter: ComposioAdapter | None = None,
    langchain_adapter: t.Any | None = None,
) -> None:
    """Initialize ToolNode with functions and optional tool adapters.

    Args:
        functions: Iterable of callable functions to register as tools. Each function
            will be registered with its `__name__` as the tool identifier.
        client: Optional MCP (Model Context Protocol) client for remote tool access.
            Requires 'fastmcp' and 'mcp' packages to be installed.
        composio_adapter: Optional Composio adapter for external integrations and
            third-party API access.
        langchain_adapter: Optional LangChain adapter for accessing LangChain tools
            and integrations.

    Raises:
        ImportError: If MCP client is provided but required packages are not installed.
        TypeError: If any item in functions is not callable.

    Note:
        When using MCP client functionality, ensure you have installed the required
        dependencies with: `pip install pyagenity[mcp]`
    """
    logger.info("Initializing ToolNode with %d functions", len(list(functions)))

    if client is not None:
        # Read flags dynamically so tests can patch pyagenity.graph.tool_node.HAS_*
        mod = sys.modules.get("pyagenity.graph.tool_node")
        has_fastmcp = getattr(mod, "HAS_FASTMCP", deps.HAS_FASTMCP) if mod else deps.HAS_FASTMCP
        has_mcp = getattr(mod, "HAS_MCP", deps.HAS_MCP) if mod else deps.HAS_MCP

        if not has_fastmcp or not has_mcp:
            raise ImportError(
                "MCP client functionality requires 'fastmcp' and 'mcp' packages. "
                "Install with: pip install pyagenity[mcp]"
            )
        logger.debug("ToolNode initialized with MCP client")

    self._funcs: dict[str, t.Callable] = {}
    self._client: deps.Client | None = client  # type: ignore
    self._composio: ComposioAdapter | None = composio_adapter
    self._langchain: t.Any | None = langchain_adapter

    for fn in functions:
        if not callable(fn):
            raise TypeError("ToolNode only accepts callables")
        self._funcs[fn.__name__] = fn

    self.mcp_tools: list[str] = []
    self.composio_tools: list[str] = []
    self.langchain_tools: list[str] = []
all_tools async
all_tools()

Get all available tools from all configured providers.

Retrieves and combines tool definitions from local functions, MCP client, Composio adapter, and LangChain adapter. Each tool definition includes the function schema with parameters and descriptions.

Returns:

Type Description
list[dict]

List of tool definitions in OpenAI function calling format. Each dict

list[dict]

contains 'type': 'function' and 'function' with name, description,

list[dict]

and parameters schema.

Example
tools = await tool_node.all_tools()
# Returns:
# [
#   {
#     "type": "function",
#     "function": {
#       "name": "weather_tool",
#       "description": "Get weather information for a location",
#       "parameters": {
#         "type": "object",
#         "properties": {
#           "location": {"type": "string"}
#         },
#         "required": ["location"]
#       }
#     }
#   }
# ]
Source code in pyagenity/graph/tool_node/base.py
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
async def all_tools(self) -> list[dict]:
    """Get all available tools from all configured providers.

    Retrieves and combines tool definitions from local functions, MCP client,
    Composio adapter, and LangChain adapter. Each tool definition includes
    the function schema with parameters and descriptions.

    Returns:
        List of tool definitions in OpenAI function calling format. Each dict
        contains 'type': 'function' and 'function' with name, description,
        and parameters schema.

    Example:
        ```python
        tools = await tool_node.all_tools()
        # Returns:
        # [
        #   {
        #     "type": "function",
        #     "function": {
        #       "name": "weather_tool",
        #       "description": "Get weather information for a location",
        #       "parameters": {
        #         "type": "object",
        #         "properties": {
        #           "location": {"type": "string"}
        #         },
        #         "required": ["location"]
        #       }
        #     }
        #   }
        # ]
        ```
    """
    return await self._all_tools_async()
all_tools_sync
all_tools_sync()

Synchronously get all available tools from all configured providers.

This is a synchronous wrapper around the async all_tools() method. It uses asyncio.run() to handle async operations from MCP, Composio, and LangChain adapters.

Returns:

Type Description
list[dict]

List of tool definitions in OpenAI function calling format.

Note

Prefer using the async all_tools() method when possible, especially in async contexts, to avoid potential event loop issues.

Source code in pyagenity/graph/tool_node/base.py
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def all_tools_sync(self) -> list[dict]:
    """Synchronously get all available tools from all configured providers.

    This is a synchronous wrapper around the async all_tools() method.
    It uses asyncio.run() to handle async operations from MCP, Composio,
    and LangChain adapters.

    Returns:
        List of tool definitions in OpenAI function calling format.

    Note:
        Prefer using the async `all_tools()` method when possible, especially
        in async contexts, to avoid potential event loop issues.
    """
    tools: list[dict] = self.get_local_tool()
    if self._client:
        result = asyncio.run(self._get_mcp_tool())
        if result:
            tools.extend(result)
    comp = asyncio.run(self._get_composio_tools())
    if comp:
        tools.extend(comp)
    lc = asyncio.run(self._get_langchain_tools())
    if lc:
        tools.extend(lc)
    return tools
get_local_tool
get_local_tool()

Generate OpenAI-compatible tool definitions for all registered local functions.

Inspects all registered functions in _funcs and automatically generates tool schemas by analyzing function signatures, type annotations, and docstrings. Excludes injectable parameters that are provided by the framework.

Returns:

Type Description
list[dict]

List of tool definitions in OpenAI function calling format. Each

list[dict]

definition includes the function name, description (from docstring),

list[dict]

and complete parameter schema with types and required fields.

Example

For a function:

def calculate(a: int, b: int, operation: str = "add") -> int:
    '''Perform arithmetic calculation.'''
    return a + b if operation == "add" else a - b

Returns:

[
    {
        "type": "function",
        "function": {
            "name": "calculate",
            "description": "Perform arithmetic calculation.",
            "parameters": {
                "type": "object",
                "properties": {
                    "a": {"type": "integer"},
                    "b": {"type": "integer"},
                    "operation": {"type": "string", "default": "add"},
                },
                "required": ["a", "b"],
            },
        },
    }
]

Note

Parameters listed in INJECTABLE_PARAMS (like 'state', 'config', 'tool_call_id') are automatically excluded from the generated schema as they are provided by the framework during execution.

Source code in pyagenity/graph/tool_node/schema.py
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
def get_local_tool(self) -> list[dict]:
    """Generate OpenAI-compatible tool definitions for all registered local functions.

    Inspects all registered functions in _funcs and automatically generates
    tool schemas by analyzing function signatures, type annotations, and docstrings.
    Excludes injectable parameters that are provided by the framework.

    Returns:
        List of tool definitions in OpenAI function calling format. Each
        definition includes the function name, description (from docstring),
        and complete parameter schema with types and required fields.

    Example:
        For a function:
        ```python
        def calculate(a: int, b: int, operation: str = "add") -> int:
            '''Perform arithmetic calculation.'''
            return a + b if operation == "add" else a - b
        ```

        Returns:
        ```python
        [
            {
                "type": "function",
                "function": {
                    "name": "calculate",
                    "description": "Perform arithmetic calculation.",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "a": {"type": "integer"},
                            "b": {"type": "integer"},
                            "operation": {"type": "string", "default": "add"},
                        },
                        "required": ["a", "b"],
                    },
                },
            }
        ]
        ```

    Note:
        Parameters listed in INJECTABLE_PARAMS (like 'state', 'config',
        'tool_call_id') are automatically excluded from the generated schema
        as they are provided by the framework during execution.
    """
    tools: list[dict] = []
    for name, fn in self._funcs.items():
        sig = inspect.signature(fn)
        params_schema: dict = {"type": "object", "properties": {}, "required": []}

        for p_name, p in sig.parameters.items():
            if p.kind in (
                inspect.Parameter.VAR_POSITIONAL,
                inspect.Parameter.VAR_KEYWORD,
            ):
                continue

            if p_name in INJECTABLE_PARAMS:
                continue

            annotation = p.annotation if p.annotation is not inspect._empty else str
            prop = SchemaMixin._annotation_to_schema(annotation, p.default)
            params_schema["properties"][p_name] = prop

            if p.default is inspect._empty:
                params_schema["required"].append(p_name)

        if not params_schema["required"]:
            params_schema.pop("required")

        description = inspect.getdoc(fn) or "No description provided."

        # provider = getattr(fn, "_py_tool_provider", None)
        # tags = getattr(fn, "_py_tool_tags", None)
        # capabilities = getattr(fn, "_py_tool_capabilities", None)

        entry = {
            "type": "function",
            "function": {
                "name": name,
                "description": description,
                "parameters": params_schema,
            },
        }
        # meta: dict[str, t.Any] = {}
        # if provider:
        #     meta["provider"] = provider
        # if tags:
        #     meta["tags"] = tags
        # if capabilities:
        #     meta["capabilities"] = capabilities
        # if meta:
        #     entry["x-pyagenity"] = meta

        tools.append(entry)

    return tools
invoke async
invoke(name, args, tool_call_id, config, state, callback_manager=Inject[CallbackManager])

Execute a specific tool by name with the provided arguments.

This method handles tool execution across all configured providers (local, MCP, Composio, LangChain) with comprehensive error handling, event publishing, and callback management.

Parameters:

Name Type Description Default
name
str

The name of the tool to execute.

required
args
dict

Dictionary of arguments to pass to the tool function.

required
tool_call_id
str

Unique identifier for this tool execution, used for tracking and result correlation.

required
config
dict[str, Any]

Configuration dictionary containing execution context and user-specific settings.

required
state
AgentState

Current agent state for context-aware tool execution.

required
callback_manager
CallbackManager

Manager for executing pre/post execution callbacks. Injected via dependency injection if not provided.

Inject[CallbackManager]

Returns:

Type Description
Any

Message object containing tool execution results, either successful

Any

output or error information with appropriate status indicators.

Example
result = await tool_node.invoke(
    name="weather_tool",
    args={"location": "Paris", "units": "metric"},
    tool_call_id="call_abc123",
    config={"user_id": "user1", "session_id": "session1"},
    state=current_agent_state,
)

# result is a Message with tool execution results
print(result.content)  # Tool output or error information
Note

The method publishes execution events throughout the process for monitoring and debugging purposes. Tool execution is routed based on tool provider precedence: MCP → Composio → LangChain → Local.

Source code in pyagenity/graph/tool_node/base.py
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
async def invoke(  # noqa: PLR0915
    self,
    name: str,
    args: dict,
    tool_call_id: str,
    config: dict[str, t.Any],
    state: AgentState,
    callback_manager: CallbackManager = Inject[CallbackManager],
) -> t.Any:
    """Execute a specific tool by name with the provided arguments.

    This method handles tool execution across all configured providers (local,
    MCP, Composio, LangChain) with comprehensive error handling, event publishing,
    and callback management.

    Args:
        name: The name of the tool to execute.
        args: Dictionary of arguments to pass to the tool function.
        tool_call_id: Unique identifier for this tool execution, used for
            tracking and result correlation.
        config: Configuration dictionary containing execution context and
            user-specific settings.
        state: Current agent state for context-aware tool execution.
        callback_manager: Manager for executing pre/post execution callbacks.
            Injected via dependency injection if not provided.

    Returns:
        Message object containing tool execution results, either successful
        output or error information with appropriate status indicators.

    Raises:
        The method handles all exceptions internally and returns error Messages
        rather than raising exceptions, ensuring robust execution flow.

    Example:
        ```python
        result = await tool_node.invoke(
            name="weather_tool",
            args={"location": "Paris", "units": "metric"},
            tool_call_id="call_abc123",
            config={"user_id": "user1", "session_id": "session1"},
            state=current_agent_state,
        )

        # result is a Message with tool execution results
        print(result.content)  # Tool output or error information
        ```

    Note:
        The method publishes execution events throughout the process for
        monitoring and debugging purposes. Tool execution is routed based
        on tool provider precedence: MCP → Composio → LangChain → Local.
    """
    logger.info("Executing tool '%s' with %d arguments", name, len(args))
    logger.debug("Tool arguments: %s", args)

    event = EventModel.default(
        config,
        data={"args": args, "tool_call_id": tool_call_id, "function_name": name},
        content_type=[ContentType.TOOL_CALL],
        event=Event.TOOL_EXECUTION,
    )
    event.node_name = name
    # Attach structured tool call block
    with contextlib.suppress(Exception):
        event.content_blocks = [ToolCallBlock(id=tool_call_id, name=name, args=args)]
    publish_event(event)

    if name in self.mcp_tools:
        event.metadata["is_mcp"] = True
        publish_event(event)
        res = await self._mcp_execute(
            name,
            args,
            tool_call_id,
            config,
            callback_manager,
        )
        event.data["message"] = res.model_dump()
        # Attach tool result block mirroring the tool output
        with contextlib.suppress(Exception):
            event.content_blocks = [
                ToolResultBlock(call_id=tool_call_id, output=res.model_dump())
            ]
        event.event_type = EventType.END
        event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
        publish_event(event)
        return res

    if name in self.composio_tools:
        event.metadata["is_composio"] = True
        publish_event(event)
        res = await self._composio_execute(
            name,
            args,
            tool_call_id,
            config,
            callback_manager,
        )
        event.data["message"] = res.model_dump()
        with contextlib.suppress(Exception):
            event.content_blocks = [
                ToolResultBlock(call_id=tool_call_id, output=res.model_dump())
            ]
        event.event_type = EventType.END
        event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
        publish_event(event)
        return res

    if name in self.langchain_tools:
        event.metadata["is_langchain"] = True
        publish_event(event)
        res = await self._langchain_execute(
            name,
            args,
            tool_call_id,
            config,
            callback_manager,
        )
        event.data["message"] = res.model_dump()
        with contextlib.suppress(Exception):
            event.content_blocks = [
                ToolResultBlock(call_id=tool_call_id, output=res.model_dump())
            ]
        event.event_type = EventType.END
        event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
        publish_event(event)
        return res

    if name in self._funcs:
        event.metadata["is_mcp"] = False
        publish_event(event)
        res = await self._internal_execute(
            name,
            args,
            tool_call_id,
            config,
            state,
            callback_manager,
        )
        event.data["message"] = res.model_dump()
        with contextlib.suppress(Exception):
            event.content_blocks = [
                ToolResultBlock(call_id=tool_call_id, output=res.model_dump())
            ]
        event.event_type = EventType.END
        event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
        publish_event(event)
        return res

    error_msg = f"Tool '{name}' not found."
    event.data["error"] = error_msg
    event.event_type = EventType.ERROR
    event.content_type = [ContentType.TOOL_RESULT, ContentType.ERROR]
    publish_event(event)
    return Message.tool_message(
        content=[
            ErrorBlock(message=error_msg),
            ToolResultBlock(
                call_id=tool_call_id,
                output=error_msg,
                is_error=True,
                status="failed",
            ),
        ],
    )
stream async
stream(name, args, tool_call_id, config, state, callback_manager=Inject[CallbackManager])

Execute a tool with streaming support, yielding incremental results.

Similar to invoke() but designed for tools that can provide streaming responses or when you want to process results as they become available. Currently, most tool providers return complete results, so this method typically yields a single Message with the full result.

Parameters:

Name Type Description Default
name
str

The name of the tool to execute.

required
args
dict

Dictionary of arguments to pass to the tool function.

required
tool_call_id
str

Unique identifier for this tool execution.

required
config
dict[str, Any]

Configuration dictionary containing execution context.

required
state
AgentState

Current agent state for context-aware tool execution.

required
callback_manager
CallbackManager

Manager for executing pre/post execution callbacks.

Inject[CallbackManager]

Yields:

Type Description
AsyncIterator[Message]

Message objects containing tool execution results or status updates.

AsyncIterator[Message]

For most tools, this will yield a single complete result Message.

Example
async for message in tool_node.stream(
    name="data_processor",
    args={"dataset": "large_data.csv"},
    tool_call_id="call_stream123",
    config={"user_id": "user1"},
    state=current_state,
):
    print(f"Received: {message.content}")
    # Process each streamed result
Note

The streaming interface is designed for future expansion where tools may provide true streaming responses. Currently, it provides a consistent async iterator interface over tool results.

Source code in pyagenity/graph/tool_node/base.py
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
async def stream(  # noqa: PLR0915
    self,
    name: str,
    args: dict,
    tool_call_id: str,
    config: dict[str, t.Any],
    state: AgentState,
    callback_manager: CallbackManager = Inject[CallbackManager],
) -> t.AsyncIterator[Message]:
    """Execute a tool with streaming support, yielding incremental results.

    Similar to invoke() but designed for tools that can provide streaming responses
    or when you want to process results as they become available. Currently,
    most tool providers return complete results, so this method typically yields
    a single Message with the full result.

    Args:
        name: The name of the tool to execute.
        args: Dictionary of arguments to pass to the tool function.
        tool_call_id: Unique identifier for this tool execution.
        config: Configuration dictionary containing execution context.
        state: Current agent state for context-aware tool execution.
        callback_manager: Manager for executing pre/post execution callbacks.

    Yields:
        Message objects containing tool execution results or status updates.
        For most tools, this will yield a single complete result Message.

    Example:
        ```python
        async for message in tool_node.stream(
            name="data_processor",
            args={"dataset": "large_data.csv"},
            tool_call_id="call_stream123",
            config={"user_id": "user1"},
            state=current_state,
        ):
            print(f"Received: {message.content}")
            # Process each streamed result
        ```

    Note:
        The streaming interface is designed for future expansion where tools
        may provide true streaming responses. Currently, it provides a
        consistent async iterator interface over tool results.
    """
    logger.info("Executing tool '%s' with %d arguments", name, len(args))
    logger.debug("Tool arguments: %s", args)
    event = EventModel.default(
        config,
        data={"args": args, "tool_call_id": tool_call_id, "function_name": name},
        content_type=[ContentType.TOOL_CALL],
        event=Event.TOOL_EXECUTION,
    )
    event.node_name = "ToolNode"
    with contextlib.suppress(Exception):
        event.content_blocks = [ToolCallBlock(id=tool_call_id, name=name, args=args)]

    if name in self.mcp_tools:
        event.metadata["function_type"] = "mcp"
        publish_event(event)
        message = await self._mcp_execute(
            name,
            args,
            tool_call_id,
            config,
            callback_manager,
        )
        event.data["message"] = message.model_dump()
        with contextlib.suppress(Exception):
            event.content_blocks = [
                ToolResultBlock(call_id=tool_call_id, output=message.model_dump())
            ]
        event.event_type = EventType.END
        event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
        publish_event(event)
        yield message
        return

    if name in self.composio_tools:
        event.metadata["function_type"] = "composio"
        publish_event(event)
        message = await self._composio_execute(
            name,
            args,
            tool_call_id,
            config,
            callback_manager,
        )
        event.data["message"] = message.model_dump()
        with contextlib.suppress(Exception):
            event.content_blocks = [
                ToolResultBlock(call_id=tool_call_id, output=message.model_dump())
            ]
        event.event_type = EventType.END
        event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
        publish_event(event)
        yield message
        return

    if name in self.langchain_tools:
        event.metadata["function_type"] = "langchain"
        publish_event(event)
        message = await self._langchain_execute(
            name,
            args,
            tool_call_id,
            config,
            callback_manager,
        )
        event.data["message"] = message.model_dump()
        with contextlib.suppress(Exception):
            event.content_blocks = [
                ToolResultBlock(call_id=tool_call_id, output=message.model_dump())
            ]
        event.event_type = EventType.END
        event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
        publish_event(event)
        yield message
        return

    if name in self._funcs:
        event.metadata["function_type"] = "internal"
        publish_event(event)

        result = await self._internal_execute(
            name,
            args,
            tool_call_id,
            config,
            state,
            callback_manager,
        )
        event.data["message"] = result.model_dump()
        with contextlib.suppress(Exception):
            event.content_blocks = [
                ToolResultBlock(call_id=tool_call_id, output=result.model_dump())
            ]
        event.event_type = EventType.END
        event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
        publish_event(event)
        yield result
        return

    error_msg = f"Tool '{name}' not found."
    event.data["error"] = error_msg
    event.event_type = EventType.ERROR
    event.content_type = [ContentType.TOOL_RESULT, ContentType.ERROR]
    publish_event(event)

    yield Message.tool_message(
        content=[
            ErrorBlock(message=error_msg),
            ToolResultBlock(
                call_id=tool_call_id,
                output=error_msg,
                is_error=True,
                status="failed",
            ),
        ],
    )

Functions

Modules