Skip to content

Executors

Executors for different tool providers and local functions.

Classes:

Name Description
ComposioMixin
KwargsResolverMixin
LangChainMixin
LocalExecMixin
MCPMixin

Attributes:

Name Type Description
logger

Attributes

logger module-attribute

logger = getLogger(__name__)

Classes

ComposioMixin

Attributes:

Name Type Description
composio_tools list[str]
Source code in pyagenity/graph/tool_node/executors.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
class ComposioMixin:
    _composio: ComposioAdapter | None
    composio_tools: list[str]

    async def _get_composio_tools(self) -> list[dict]:
        tools: list[dict] = []
        if not self._composio:
            return tools
        try:
            raw = self._composio.list_raw_tools_for_llm()
            for tdef in raw:
                fn = tdef.get("function", {})
                name = fn.get("name")
                if name:
                    self.composio_tools.append(name)
                tools.append(tdef)
        except Exception as e:  # pragma: no cover - network/optional
            logger.exception("Failed to fetch Composio tools: %s", e)
        return tools

    async def _composio_execute(  # noqa: PLR0915
        self,
        name: str,
        args: dict,
        tool_call_id: str,
        config: dict[str, t.Any],
        callback_mgr: CallbackManager,
    ) -> Message:
        context = CallbackContext(
            invocation_type=InvocationType.TOOL,
            node_name="ToolNode",
            function_name=name,
            metadata={
                "tool_call_id": tool_call_id,
                "args": args,
                "config": config,
                "composio": True,
            },
        )
        meta = {"function_name": name, "function_argument": args, "tool_call_id": tool_call_id}

        event = EventModel.default(
            base_config=config,
            data={
                "tool_call_id": tool_call_id,
                "args": args,
                "function_name": name,
                "is_composio": True,
            },
            content_type=[ContentType.TOOL_CALL],
            event=Event.TOOL_EXECUTION,
        )
        event.event_type = EventType.PROGRESS
        event.node_name = "ToolNode"
        event.sequence_id = 1
        publish_event(event)

        input_data = {**args}

        def safe_serialize(obj: t.Any) -> dict[str, t.Any]:
            try:
                json.dumps(obj)
                return obj if isinstance(obj, dict) else {"content": obj}
            except (TypeError, OverflowError):
                if hasattr(obj, "model_dump"):
                    dumped = obj.model_dump()  # type: ignore
                    if isinstance(dumped, dict) and dumped.get("type") == "resource":
                        resource = dumped.get("resource", {})
                        if isinstance(resource, dict) and "uri" in resource:
                            resource["uri"] = str(resource["uri"])
                            dumped["resource"] = resource
                    return dumped
                return {"content": str(obj), "type": "fallback"}

        try:
            input_data = await callback_mgr.execute_before_invoke(context, input_data)
            event.event_type = EventType.UPDATE
            event.sequence_id = 2
            event.metadata["status"] = "before_invoke_complete Invoke Composio"
            publish_event(event)

            comp_conf = (config.get("composio") if isinstance(config, dict) else None) or {}
            user_id = comp_conf.get("user_id") or config.get("user_id")
            connected_account_id = comp_conf.get("connected_account_id") or config.get(
                "connected_account_id"
            )

            if not self._composio:
                error_result = Message.tool_message(
                    content=[
                        ErrorBlock(message="Composio adapter not configured"),
                        ToolResultBlock(
                            call_id=tool_call_id,
                            output="Composio adapter not configured",
                            status="failed",
                            is_error=True,
                        ),
                    ],
                    meta=meta,
                )
                event.event_type = EventType.ERROR
                event.metadata["error"] = "Composio adapter not configured"
                publish_event(event)
                return error_result

            res = self._composio.execute(
                slug=name,
                arguments=input_data,
                user_id=user_id,
                connected_account_id=connected_account_id,
            )

            successful = bool(res.get("successful"))
            payload = res.get("data")
            error = res.get("error")

            result_blocks = []
            if error and not successful:
                result_blocks.append(
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output={"success": False, "error": error},
                        status="failed",
                        is_error=True,
                    )
                )
                result_blocks.append(ErrorBlock(message=error))
            else:
                if isinstance(payload, list):
                    output = [safe_serialize(item) for item in payload]
                else:
                    output = [safe_serialize(payload)]
                result_blocks.append(
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output=output,
                        status="completed" if successful else "failed",
                        is_error=not successful,
                    )
                )

            result = Message.tool_message(
                content=result_blocks,
                meta=meta,
            )

            res_msg = await callback_mgr.execute_after_invoke(context, input_data, result)
            event.event_type = EventType.END
            event.data["message"] = result.model_dump()
            event.metadata["status"] = "Composio tool execution complete"
            event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
            publish_event(event)
            return res_msg

        except Exception as e:  # pragma: no cover - error path
            recovery_result = await callback_mgr.execute_on_error(context, input_data, e)
            if isinstance(recovery_result, Message):
                event.event_type = EventType.END
                event.data["message"] = recovery_result.model_dump()
                event.metadata["status"] = "Composio tool execution complete, with recovery"
                event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
                publish_event(event)
                return recovery_result

            event.event_type = EventType.END
            event.data["error"] = str(e)
            event.metadata["status"] = "Composio tool execution complete, with error"
            event.content_type = [ContentType.TOOL_RESULT, ContentType.ERROR]
            publish_event(event)
            return Message.tool_message(
                content=[
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output=f"Composio execution error: {e}",
                        status="failed",
                        is_error=True,
                    ),
                    ErrorBlock(message=f"Composio execution error: {e}"),
                ],
                meta=meta,
            )

Attributes

composio_tools instance-attribute
composio_tools

KwargsResolverMixin

Source code in pyagenity/graph/tool_node/executors.py
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
class KwargsResolverMixin:
    def _should_skip_parameter(self, param: inspect.Parameter) -> bool:
        return param.kind in (
            inspect.Parameter.VAR_POSITIONAL,
            inspect.Parameter.VAR_KEYWORD,
        )

    def _handle_injectable_parameter(
        self,
        p_name: str,
        param: inspect.Parameter,
        injectable_params: dict,
        dependency_container,
    ) -> t.Any | None:
        if p_name in injectable_params:
            injectable_value = injectable_params[p_name]
            if injectable_value is not None:
                return injectable_value

        if dependency_container and dependency_container.has(p_name):
            return dependency_container.get(p_name)

        if param.default is inspect._empty:
            raise TypeError(f"Required injectable parameter '{p_name}' not found")

        return None

    def _get_parameter_value(
        self,
        p_name: str,
        param: inspect.Parameter,
        args: dict,
        injectable_params: dict,
        dependency_container,
    ) -> t.Any | None:
        if p_name in injectable_params:
            return self._handle_injectable_parameter(
                p_name, param, injectable_params, dependency_container
            )

        value_sources = [
            lambda: args.get(p_name),
            lambda: (
                dependency_container.get(p_name)
                if dependency_container and dependency_container.has(p_name)
                else None
            ),
        ]

        for source in value_sources:
            value = source()
            if value is not None:
                return value

        if param.default is not inspect._empty:
            return None

        raise TypeError(f"Missing required parameter '{p_name}' for function")

    def _prepare_kwargs(
        self,
        sig: inspect.Signature,
        args: dict,
        injectable_params: dict,
        dependency_container,
    ) -> dict:
        kwargs: dict = {}
        for p_name, p in sig.parameters.items():
            if self._should_skip_parameter(p):
                continue
            value = self._get_parameter_value(
                p_name, p, args, injectable_params, dependency_container
            )
            if value is not None:
                kwargs[p_name] = value
        return kwargs

LangChainMixin

Attributes:

Name Type Description
langchain_tools list[str]
Source code in pyagenity/graph/tool_node/executors.py
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
class LangChainMixin:
    _langchain: t.Any | None
    langchain_tools: list[str]

    async def _get_langchain_tools(self) -> list[dict]:
        tools: list[dict] = []
        if not self._langchain:
            return tools
        try:
            raw = self._langchain.list_tools_for_llm()
            for tdef in raw:
                fn = tdef.get("function", {})
                name = fn.get("name")
                if name:
                    self.langchain_tools.append(name)
                tools.append(tdef)
        except Exception as e:  # pragma: no cover - optional
            logger.warning("Failed to fetch LangChain tools: %s", e)
        return tools

    async def _langchain_execute(  # noqa: PLR0915
        self,
        name: str,
        args: dict,
        tool_call_id: str,
        config: dict[str, t.Any],
        callback_mgr: CallbackManager,
    ) -> Message:
        context = CallbackContext(
            invocation_type=InvocationType.TOOL,
            node_name="ToolNode",
            function_name=name,
            metadata={
                "tool_call_id": tool_call_id,
                "args": args,
                "config": config,
                "langchain": True,
            },
        )
        meta = {"function_name": name, "function_argument": args, "tool_call_id": tool_call_id}

        event = EventModel.default(
            base_config=config,
            data={
                "tool_call_id": tool_call_id,
                "args": args,
                "function_name": name,
                "is_langchain": True,
            },
            content_type=[ContentType.TOOL_CALL],
            event=Event.TOOL_EXECUTION,
        )
        event.event_type = EventType.PROGRESS
        event.node_name = "ToolNode"
        event.sequence_id = 1
        publish_event(event)

        input_data = {**args}

        def safe_serialize(obj: t.Any) -> dict[str, t.Any]:
            try:
                json.dumps(obj)
                return obj if isinstance(obj, dict) else {"content": obj}
            except (TypeError, OverflowError):
                if hasattr(obj, "model_dump"):
                    dumped = obj.model_dump()  # type: ignore
                    if isinstance(dumped, dict) and dumped.get("type") == "resource":
                        resource = dumped.get("resource", {})
                        if isinstance(resource, dict) and "uri" in resource:
                            resource["uri"] = str(resource["uri"])
                            dumped["resource"] = resource
                    return dumped
                return {"content": str(obj), "type": "fallback"}

        try:
            input_data = await callback_mgr.execute_before_invoke(context, input_data)
            event.event_type = EventType.UPDATE
            event.sequence_id = 2
            event.metadata["status"] = "before_invoke_complete Invoke LangChain"
            publish_event(event)

            if not self._langchain:
                error_result = Message.tool_message(
                    content=[
                        ErrorBlock(message="LangChain adapter not configured"),
                        ToolResultBlock(
                            call_id=tool_call_id,
                            output="LangChain adapter not configured",
                            status="failed",
                            is_error=True,
                        ),
                    ],
                    meta=meta,
                )
                event.event_type = EventType.ERROR
                event.metadata["error"] = "LangChain adapter not configured"
                publish_event(event)
                return error_result

            res = self._langchain.execute(name=name, arguments=input_data)
            successful = bool(res.get("successful"))
            payload = res.get("data")
            error = res.get("error")

            result_blocks = []
            if error and not successful:
                result_blocks.append(
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output={"success": False, "error": error},
                        status="failed",
                        is_error=True,
                    )
                )
                result_blocks.append(ErrorBlock(message=error))
            else:
                if isinstance(payload, list):
                    output = [safe_serialize(item) for item in payload]
                else:
                    output = [safe_serialize(payload)]
                result_blocks.append(
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output=output,
                        status="completed" if successful else "failed",
                        is_error=not successful,
                    )
                )

            result = Message.tool_message(
                content=result_blocks,
                meta=meta,
            )

            res_msg = await callback_mgr.execute_after_invoke(context, input_data, result)
            event.event_type = EventType.END
            event.data["message"] = result.model_dump()
            event.metadata["status"] = "LangChain tool execution complete"
            event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
            publish_event(event)
            return res_msg

        except Exception as e:  # pragma: no cover - error path
            recovery_result = await callback_mgr.execute_on_error(context, input_data, e)
            if isinstance(recovery_result, Message):
                event.event_type = EventType.END
                event.data["message"] = recovery_result.model_dump()
                event.metadata["status"] = "LangChain tool execution complete, with recovery"
                event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
                publish_event(event)
                return recovery_result

            event.event_type = EventType.END
            event.data["error"] = str(e)
            event.metadata["status"] = "LangChain tool execution complete, with error"
            event.content_type = [ContentType.TOOL_RESULT, ContentType.ERROR]
            publish_event(event)
            return Message.tool_message(
                content=[
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output=f"LangChain execution error: {e}",
                        status="failed",
                        is_error=True,
                    ),
                    ErrorBlock(message=f"LangChain execution error: {e}"),
                ],
                meta=meta,
            )

Attributes

langchain_tools instance-attribute
langchain_tools

LocalExecMixin

Source code in pyagenity/graph/tool_node/executors.py
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
class LocalExecMixin:
    _funcs: dict[str, t.Callable]

    def _prepare_input_data_tool(
        self,
        fn: t.Callable,
        name: str,
        args: dict,
        default_data: dict,
    ) -> dict:
        sig = inspect.signature(fn)
        input_data = {}
        for param_name, param in sig.parameters.items():
            if param.kind in (
                inspect.Parameter.VAR_POSITIONAL,
                inspect.Parameter.VAR_KEYWORD,
            ):
                continue

            if param_name in ["state", "config", "tool_call_id"]:
                input_data[param_name] = default_data[param_name]
                continue

            if param_name in INJECTABLE_PARAMS:
                continue

            if (
                hasattr(param, "default")
                and param.default is not inspect._empty
                and hasattr(param.default, "__class__")
            ):
                try:
                    if "Inject" in str(type(param.default)):
                        logger.debug(
                            "Skipping injectable parameter '%s' with Inject syntax",
                            param_name,
                        )
                        continue
                except Exception as exc:  # pragma: no cover - defensive
                    logger.exception("Inject detection failed for '%s': %s", param_name, exc)

            if param_name in args:
                input_data[param_name] = args[param_name]
            elif param.default is inspect.Parameter.empty:
                raise TypeError(f"Missing required parameter '{param_name}' for function '{name}'")

        return input_data

    async def _internal_execute(  # noqa: PLR0915
        self,
        name: str,
        args: dict,
        tool_call_id: str,
        config: dict[str, t.Any],
        state: AgentState,
        callback_mgr: CallbackManager,
    ) -> Message:
        context = CallbackContext(
            invocation_type=InvocationType.TOOL,
            node_name="ToolNode",
            function_name=name,
            metadata={"tool_call_id": tool_call_id, "args": args, "config": config},
        )

        fn = self._funcs[name]
        input_data = self._prepare_input_data_tool(
            fn,
            name,
            args,
            {
                "tool_call_id": tool_call_id,
                "state": state,
                "config": config,
            },
        )

        meta = {
            "function_name": name,
            "function_argument": args,
            "tool_call_id": tool_call_id,
        }

        event = EventModel.default(
            base_config=config,
            data={
                "tool_call_id": tool_call_id,
                "args": args,
                "function_name": name,
                "is_mcp": False,
            },
            content_type=[ContentType.TOOL_CALL],
            event=Event.TOOL_EXECUTION,
        )
        event.event_type = EventType.PROGRESS
        event.node_name = "ToolNode"
        event.sequence_id = 1
        publish_event(event)

        def safe_serialize(obj: t.Any) -> dict[str, t.Any]:
            try:
                json.dumps(obj)
                return obj if isinstance(obj, dict) else {"content": obj}
            except (TypeError, OverflowError):
                if hasattr(obj, "model_dump"):
                    dumped = obj.model_dump()  # type: ignore
                    if isinstance(dumped, dict) and dumped.get("type") == "resource":
                        resource = dumped.get("resource", {})
                        if isinstance(resource, dict) and "uri" in resource:
                            resource["uri"] = str(resource["uri"])
                            dumped["resource"] = resource
                    return dumped
                return {"content": str(obj), "type": "fallback"}

        try:
            input_data = await callback_mgr.execute_before_invoke(context, input_data)

            event.event_type = EventType.UPDATE
            event.sequence_id = 2
            event.metadata["status"] = "before_invoke_complete Invoke internal"
            publish_event(event)

            result = await call_sync_or_async(fn, **input_data)

            result = await callback_mgr.execute_after_invoke(
                context,
                input_data,
                result,
            )

            if isinstance(result, Message):
                meta_data = result.metadata or {}
                meta.update(meta_data)
                result.metadata = meta

                event.event_type = EventType.END
                event.data["message"] = result.model_dump()
                event.metadata["status"] = "Internal tool execution complete"
                event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
                publish_event(event)
                return result

            result_blocks = []
            if isinstance(result, str):
                result_blocks.append(
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output=result,
                        status="completed",
                        is_error=False,
                    )
                )
            elif isinstance(result, dict):
                result_blocks.append(
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output=[safe_serialize(result)],
                        status="completed",
                        is_error=False,
                    )
                )
            elif hasattr(result, "model_dump"):
                result_blocks.append(
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output=[safe_serialize(result.model_dump())],
                        status="completed",
                        is_error=False,
                    )
                )
            elif hasattr(result, "__dict__"):
                result_blocks.append(
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output=[safe_serialize(result.__dict__)],
                        status="completed",
                        is_error=False,
                    )
                )
            elif isinstance(result, list):
                output = [safe_serialize(item) for item in result]
                result_blocks.append(
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output=output,
                        status="completed",
                        is_error=False,
                    )
                )
            else:
                result_blocks.append(
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output=str(result),
                        status="completed",
                        is_error=False,
                    )
                )

            msg = Message.tool_message(
                content=result_blocks,
                meta=meta,
            )

            event.event_type = EventType.END
            event.data["message"] = msg.model_dump()
            event.metadata["status"] = "Internal tool execution complete"
            event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
            publish_event(event)

            return msg

        except Exception as e:  # pragma: no cover - error path
            recovery_result = await callback_mgr.execute_on_error(context, input_data, e)

            if isinstance(recovery_result, Message):
                event.event_type = EventType.END
                event.data["message"] = recovery_result.model_dump()
                event.metadata["status"] = "Internal tool execution complete, with recovery"
                event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
                publish_event(event)
                return recovery_result

            event.event_type = EventType.END
            event.data["error"] = str(e)
            event.metadata["status"] = "Internal tool execution complete, with error"
            event.content_type = [ContentType.TOOL_RESULT, ContentType.ERROR]
            publish_event(event)

            return Message.tool_message(
                content=[
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output=f"Internal execution error: {e}",
                        status="failed",
                        is_error=True,
                    ),
                    ErrorBlock(message=f"Internal execution error: {e}"),
                ],
                meta=meta,
            )

MCPMixin

Attributes:

Name Type Description
mcp_tools list[str]
Source code in pyagenity/graph/tool_node/executors.py
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
class MCPMixin:
    _client: t.Any | None
    # The concrete ToolNode defines this
    mcp_tools: list[str]  # type: ignore[assignment]

    def _serialize_result(
        self,
        tool_call_id: str,
        res: t.Any,
    ) -> list[ContentBlock]:
        def safe_serialize(obj: t.Any) -> dict[str, t.Any]:
            try:
                json.dumps(obj)
                return obj if isinstance(obj, dict) else {"content": obj}
            except (TypeError, OverflowError):
                if hasattr(obj, "model_dump"):
                    dumped = obj.model_dump()  # type: ignore
                    if isinstance(dumped, dict) and dumped.get("type") == "resource":
                        resource = dumped.get("resource", {})
                        if isinstance(resource, dict) and "uri" in resource:
                            resource["uri"] = str(resource["uri"])
                            dumped["resource"] = resource
                    return dumped
                return {"content": str(obj), "type": "fallback"}

        for source in [
            getattr(res, "content", None),
            getattr(res, "structured_content", None),
            getattr(res, "data", None),
        ]:
            if source is None:
                continue
            try:
                if isinstance(source, list):
                    result = [safe_serialize(item) for item in source]
                else:
                    result = [safe_serialize(source)]

                return [
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output=result,
                        is_error=False,
                        status="completed",
                    )
                ]
            except Exception as e:  # pragma: no cover - defensive
                logger.exception("Serialization failure: %s", e)
                continue

        return [
            ToolResultBlock(
                call_id=tool_call_id,
                output=[
                    {
                        "content": str(res),
                        "type": "fallback",
                    }
                ],
                is_error=False,
                status="completed",
            )
        ]

    async def _get_mcp_tool(self) -> list[dict]:
        tools: list[dict] = []
        if self._client:
            async with self._client:
                res = await self._client.ping()
                if not res:
                    return tools
                mcp_tools: list[t.Any] = await self._client.list_tools()
                for i in mcp_tools:
                    # attribute provided by concrete ToolNode
                    self.mcp_tools.append(i.name)  # type: ignore[attr-defined]
                    tools.append(
                        {
                            "type": "function",
                            "function": {
                                "name": i.name,
                                "description": i.description,
                                "parameters": i.inputSchema,
                            },
                        }
                    )
        return tools

    async def _mcp_execute(
        self,
        name: str,
        args: dict,
        tool_call_id: str,
        config: dict[str, t.Any],
        callback_mgr: CallbackManager,
    ) -> Message:
        context = CallbackContext(
            invocation_type=InvocationType.MCP,
            node_name="ToolNode",
            function_name=name,
            metadata={
                "tool_call_id": tool_call_id,
                "args": args,
                "config": config,
                "mcp_client": bool(self._client),
            },
        )

        meta = {
            "function_name": name,
            "function_argument": args,
            "tool_call_id": tool_call_id,
        }

        event = EventModel.default(
            base_config=config,
            data={
                "tool_call_id": tool_call_id,
                "args": args,
                "function_name": name,
                "is_mcp": True,
            },
            content_type=[ContentType.TOOL_CALL],
            event=Event.TOOL_EXECUTION,
        )
        event.event_type = EventType.PROGRESS
        event.node_name = "ToolNode"
        event.sequence_id = 1
        publish_event(event)

        input_data = {**args}

        try:
            input_data = await callback_mgr.execute_before_invoke(context, input_data)
            event.event_type = EventType.UPDATE
            event.sequence_id = 2
            event.metadata["status"] = "before_invoke_complete Invoke MCP"
            publish_event(event)

            if not self._client:
                error_result = Message.tool_message(
                    content=[
                        ErrorBlock(
                            message="No MCP client configured",
                        ),
                        ToolResultBlock(
                            call_id=tool_call_id,
                            output="No MCP client configured",
                            is_error=True,
                            status="failed",
                        ),
                    ],
                    meta=meta,
                )
                res = await callback_mgr.execute_after_invoke(context, input_data, error_result)
                event.event_type = EventType.ERROR
                event.metadata["error"] = "No MCP client configured"
                publish_event(event)
                return res

            async with self._client:
                if not await self._client.ping():
                    error_result = Message.tool_message(
                        content=[
                            ErrorBlock(message="MCP Server not available. Ping failed."),
                            ToolResultBlock(
                                call_id=tool_call_id,
                                output="MCP Server not available. Ping failed.",
                                is_error=True,
                                status="failed",
                            ),
                        ],
                        meta=meta,
                    )
                    event.event_type = EventType.ERROR
                    event.metadata["error"] = "MCP server not available, ping failed"
                    publish_event(event)
                    return await callback_mgr.execute_after_invoke(
                        context, input_data, error_result
                    )

                res: t.Any = await self._client.call_tool(name, input_data)

                final_res = self._serialize_result(tool_call_id, res)

                result = Message.tool_message(
                    content=final_res,
                    meta=meta,
                )

                res = await callback_mgr.execute_after_invoke(context, input_data, result)
                event.event_type = EventType.END
                event.data["message"] = result.model_dump()
                event.metadata["status"] = "MCP tool execution complete"
                event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
                publish_event(event)
                return res

        except Exception as e:  # pragma: no cover - error path
            recovery_result = await callback_mgr.execute_on_error(context, input_data, e)

            if isinstance(recovery_result, Message):
                event.event_type = EventType.END
                event.data["message"] = recovery_result.model_dump()
                event.metadata["status"] = "MCP tool execution complete, with recovery"
                event.content_type = [ContentType.TOOL_RESULT, ContentType.MESSAGE]
                publish_event(event)
                return recovery_result

            event.event_type = EventType.END
            event.data["error"] = str(e)
            event.metadata["status"] = "MCP tool execution complete, with recovery"
            event.content_type = [ContentType.TOOL_RESULT, ContentType.ERROR]
            publish_event(event)

            return Message.tool_message(
                content=[
                    ToolResultBlock(
                        call_id=tool_call_id,
                        output=f"MCP execution error: {e}",
                        is_error=True,
                        status="failed",
                    ),
                    ErrorBlock(message=f"MCP execution error: {e}"),
                ],
                meta=meta,
            )

Attributes

mcp_tools instance-attribute
mcp_tools

Functions