Dict-like Interface¶
The dict-like interface is the simplest way to register and retrieve services. Use InjectQ.get_instance() to get the container.
Basic Usage¶
from injectq import InjectQ
container = InjectQ.get_instance()
# Register simple values
container[str] = "Hello, InjectQ!"
container[int] = 42
container["database_url"] = "postgresql://localhost/db"
# Retrieve services
message = container[str]
number = container[int]
db_url = container["database_url"]
```## Class Registration
Register classes for automatic instantiation:
```python
from injectq import InjectQ
container = InjectQ.get_instance()
class DatabaseConfig:
def __init__(self):
self.host = "localhost"
self.port = 5432
class Database:
def __init__(self, config: DatabaseConfig):
self.config = config
class UserRepository:
def __init__(self, db: Database):
self.db = db
# Register classes
container[DatabaseConfig] = DatabaseConfig
container[Database] = Database
container[UserRepository] = UserRepository
# Automatic dependency resolution
repo = container[UserRepository]
Key operations¶
Setting values¶
from injectq import InjectQ
container = InjectQ.get_instance()
# Simple values
container[str] = "configuration"
container[int] = 12345
container[bool] = True
# Complex objects
container["config"] = AppConfig(host="prod", debug=False)
# Classes (for automatic instantiation)
container[Database] = Database
container[UserService] = UserService
# Instances (pre-created objects)
container["cache"] = RedisCache(host="localhost")
Getting values¶
# Simple retrieval
config = container[str]
number = container[int]
# With type hints (better IDE support)
config: str = container[str]
service: UserService = container[UserService]
Checking existence¶
# Check if a service is registered
if str in container:
config = container[str]
if "database" in container:
db = container["database"]
Removing services¶
# Remove a service
del container[str]
del container[Database]
# Check removal
assert str not in container
assert Database not in container
Testing with Dict Interface¶
Use the testing utilities to create test containers:
from injectq.testing import test_container
def test_user_service():
with test_container() as container:
container[Database] = MockDatabase()
container[UserService] = UserService
service = container[UserService]
result = service.get_user(1)
assert result is not None
⚖️ When to Use Dict Interface¶
Good for: - Simple applications with few services - Configuration values (strings, numbers, settings) - Prototyping and learning DI - Quick setup projects
Not ideal for: - Large applications with many dependencies - Complex interdependent services - Advanced scoping requirements - Large teams needing explicit contracts
🎯 Summary¶
The dict-like interface is: - Simple — Easy to understand and use - Flexible — Store any type of value or service - Fast — Quick setup for small projects
Ready to explore the @inject decorator?
⚖️ When to Use Dict Interface¶
✅ Good For¶
- Simple applications - Quick setup without complex configuration
- Configuration values - Storing strings, numbers, settings
- Prototyping - Fast iteration and testing
- Small projects - When you don't need advanced features
- Learning DI - Easiest way to understand the concepts
❌ Not Ideal For¶
- Large applications - Can become messy with many services
- Complex dependencies - Hard to manage intricate dependency graphs
- Type safety - Less type-safe than other approaches
- Advanced scoping - Limited lifetime management
- Team development - Less explicit about dependencies
🔄 Migration Path¶
You can start with the dict interface and migrate to more advanced patterns:
# Phase 1: Simple dict interface
container = InjectQ()
container[Database] = Database
container[UserService] = UserService
# Phase 2: Add modules for organization
class DatabaseModule(Module):
def configure(self, binder):
binder.bind(Database, Database)
container = InjectQ([DatabaseModule()])
# Phase 3: Add type safety with protocols
class IDatabase(Protocol):
def connect(self) -> None: ...
container.bind(IDatabase, PostgreSQLDatabase)
🏆 Best Practices¶
1. Use Descriptive Keys¶
# ✅ Good - descriptive keys
container["database_url"] = "postgresql://..."
container["redis_host"] = "localhost"
container["api_timeout"] = 30
# ❌ Avoid - unclear keys
container["url"] = "postgresql://..."
container["host"] = "localhost"
container["num"] = 30
2. Group Related Configuration¶
# ✅ Good - grouped configuration
container["database"] = {
"host": "localhost",
"port": 5432,
"name": "myapp"
}
container["cache"] = {
"host": "redis",
"ttl": 3600
}
# ❌ Avoid - scattered configuration
container["db_host"] = "localhost"
container["db_port"] = 5432
container["cache_host"] = "redis"
3. Use Factories for Dynamic Values¶
# ✅ Good - factories for dynamic values
container["request_id"] = lambda: str(uuid.uuid4())
container["timestamp"] = lambda: datetime.now()
# ❌ Avoid - static values that should be dynamic
container["request_id"] = "static-id" # Same for all requests
4. Document Your Services¶
# ✅ Good - documented services
container["database"] = PostgreSQLDatabase() # Main application database
container["cache"] = RedisCache() # Redis cache for performance
container["logger"] = StructuredLogger() # JSON structured logging
🎯 Summary¶
The dict-like interface is:
- Simple - Easy to understand and use
- Flexible - Store any type of value or service
- Fast - Quick setup for small projects
- Intuitive - Familiar dictionary-like API
Key features: - Store simple values, objects, classes, or factories - Automatic dependency resolution for registered classes - Easy testing with dependency overrides - Seamless integration with other InjectQ features
When to use: - Learning dependency injection - Small to medium applications - Prototyping and experimentation - Simple configuration management
Ready to explore the @inject decorator?